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ABSTRACT 1.1. Statistical approach to spectral unmixing

This paper presents a new method of minimum volume clasgodeling the abundance fractions (sources) statistical dependence in
for hyperspectral unmixing, termexdinimum volume simplex analy- - pyperspectral unmixing is a central issue in the statistical framework.
sis(MVSA). The underlying mixing model is lineare., the mixed | [7], the abundance fractions are modeled as mixtures of Dirich-
hyperspectral vectors are modeled by a linear mixture of the endgt gensities. The resulting algorithm, termed DECA, for dependent
member signatures weighted by the correspondent abundance fragmponent analysis, implements an expectation maximization iter-
tions. MVSA approaches hyperspectral unmixing by fitting a min-atative scheme for the inference of the endmember signatures (mix-

imum volume simplex to the hyperspectral data, constraining thg,g matrix) and the density parameters of the abundance fractions.
abundance fractions to belong to the probability simplex. The re-

sulting optimization problem is solved by implementing a sequence, | € inference engine in the Bayesian framework is the posterior
of quadratically constrained subproblems. In a final step, the harf€nsity of the entities to be estimated, given the observations. Ac-

constraint on the abundance fractions is replaced with a hinge typeP9ing to the Bayes law, the posterior includes two factors: the ob-
loss function to account for outliers and noise. servation density, which may account for additive noise, and a prior,

which may impose constraints on the endmember madrix (hon-

We illustrate the state-of-the-art performance of the MVSA al- egativity of its elements) and on the abundance fractieng. to

gorithm in unmixing simulated data sets. We are mainly concerning_ "~ N o
with the realistic scenario in which thgure pixelassumptioni(e., @e in the probability s_lmplex)_and model spectral variability. Works
0[8, 9] are representative of this line of attack.

there exists at least one pure pixel per endmember) is not fulfilled.
In these conditions, the MVSA yields much better performance than
the pure pixel based algorithms.

~ Index Terms— Hyperspectral unmixing, Minimum volume 1.2. Geometrical approach to spectral unmixing
simplex, Source separation.

The geometrical approach exploits the fact that, under the linear mix-
ing model, hyperspectral vectors belong to a simplex set whose ver-
tices correspond to the endmembers. Therefore, finding the end-

L . members is equivalent to identify the vertices of the referred to sim-
Hyperspectral unmixing is a source separation problem [1]. Comg, .

pared with the canonical source separation scenario, the sources'in ) ) o
hyperspectral unmixing.€., the materials present in the scene) are _ |f there exists at least one puriee(, containing just one mater-
statistically dependent and combine in a linear or nonlinear fashil) pixel per endmember, then unmixing amounts to find the spec-
ion. These characteristics, together with the high dimensionality ofral vectors in the data set corresponding to the vertices of the data
hyperspectral vectors, place the unmixing of hyperspectral mixturesimplex. Some popular algorithms taking this assumption are the
beyond the reach of most source separation algorithms, thus fostdfl€ N-FINDR [10], the thepixel purity index(PPI) [11], theAu-
ing active research in the field [2]. tomated Morphological Endmember Extractl.()hMEE) [12], the
Given a set of mixed hyperspectral vectors, linear mixture’€"€x component analys{yCA) [4], and thesimplex growing al-
analysis, or linear unmixing, aims at estimating the number of ref9°rthm(SGA) [13].
erence materials, also called endmembers, their spectral signatures, If the pure pixel assumption is not fulfilled, what is a more realis-
and their abundance fractions [1, 2, 3, 4, 5, 6]. The approaches tic scenario, the unmixing process is a rather challenging task, since
hyperspectral linear unmixing can be classified as statistical anthe endmembers, or at least some of them, are not in the data set. A
geometrical based. The former addresses spectral unmixing as possible line of attack, in the vein of the seminal ideas introduced in
inference problem, often formulated under the Bayesian frameworKg], is to fit a simplex of minimum volume to the data set. Relevant
whereas the latter exploits the fact that the spectral vectors, under teorks exploiting this direction are then-negative least-correlated
linear mixing model, are in a simplex set whose vertices represerdomponent analysi@LCA) [14], thealternating projected subgra-
the sought endmembers. dients[15], and thenonnegative matrix factorization minimum vol-
ume transform(NMF-MVT) [16]. We consider that the NMF-MVT
This work was supported by the European Commission Marie Curiea|gorithm is representative of the state-of-the-art in the minimum
training grant MEST-CT-2005-021175. Emé4jlin, biouca3 @Ix.it.pt volume simplex fitting approaches.

1. INTRODUCTION




1.3. Proposed approach whereQ = M. Sincedet(Q) = 1/ det(M), we can replace the

roblem (2) with the following:
We introduce theninimum volume simplex analisfidVSA) algo- P @ g

rithm for unsupervised hyperspectral linear unmixing. As the name Q* = argmax log|det(Q)]
suggests, MVSA belongs to the minimum volume class, and thus . v f TOy — 1T 3)
is able to unmix hyperspectral data sets in which the pure pixel as- st.. QY =0, L,QY =1y

sumption is violated. _ Optimizations (2) and (3) are nonlinear, although the constraints are
Fitting a simplex of minimum volume to hyperspectral data is ajinear, Problem (2) is non-convex and has many local minima. So,

hard nonconvex optimization problem, which may end up in a locajgplem (3) is non-concave and has many local maxima. There-

minimum. To avoid poor quality local minima, a good initialization fore  there is no hope in finding systematically the global optima

is of paramount importance. We initialize MVSA with an inflated ¢ (3). The MVSA algorithm, we introduce below aims at “good”

version of the simplex provided by VCA [2], a pure pixel based a"sub-optimal solutions of optimization problem (3).

gorithm. Although this initialization may be far from the optimum, Our first step is to simplify the set of constrairltﬁQY =17

we have observed that it is systematically in the attraction basin of By noting that every spectral vectgrin the data set can be written

good quality local minimum. Furthermore, since VCA yields a sim- 55 3 |inear combination gflinearly independent vectors taken from

plex defined by spectral vectors existing in the data set, we can digpe gata set say, = [y; yi], where the weights add to one:
Y . . ’ 119y Jiph .
card all the spectral vectors that are inside this simplex, what accel- y = Y,8, Wherelgﬂ — 1. It turns out then, the constraint

QY = 1% is equivalent tol} QY, = 1% or else tol; Q =

erates the algorithm. Moreover, by carefully choosing the ianatingéT
factor, the large majority of constraints related with the abundance?. - s T i ) )
source fractions become inactive, what contributes to speeding u]pr (Yp)~ . Definingg, = 1, (Y,) ™, we get the equality constraint

the algorithm, as well. 1, @ = gm. Then, the problem (3) simplifies to

Minimum volume simplex algorithms are very sensitive to out- . loe | d
liers. To make MVSA robust to outliers and noise, we run a final Q" = argmax log|det(Q)| @)
step in which the abundance fraction positivity hard constraint is re- st.: QY =0, 17Q = gm.

placed by a hinge type soft constraint. This step, applied after having

found the minimum volume simplex, preserves the good quality of ~We solve the optimization problem (4) by finding the solu-

local minima. tion of the respective Kuhn-Tucker equations using a sequencial
The paper is organized as follows. Section 2 introduces the cor@uadratic programing (SQP) methods. This methods belongs to the

of MVSA algorithm. Section 3 illustrates aspects of the performancéonstrained Newton (or quasi-Newton) and guarantee superlinear

of MVSA approach with simulated data, and Section 4 ends the paconvergence by accumulating second-order information regarding
per by presenting a few concluding remarks. the Kuhn-Tucker equations [18]. Each quadratic problem builds a

guadratic approximation for the Lagrangean function associated to
(4). For this reason, we supply the gradient and the Hessignrof

2. MINIMUM VOLUME SIMPLEX ANALYSIS each SQP iteration.
ALGORITHM (MVSA) Usually, the hyperspectral data sets are huge and, thus, the above
) . maximization is heavy from the computational point of view. To
LetY = [y1,...,yn] € RP*™ be a matrix holding in its columns

» : . lighten the MVSA algorithm, we initialize it with the set of end-
the spectral vectorg; € R?, for ¢ =1,2,...,m, of a given hyper_- members\ = [m, ..., m,] generated by the VCA [2] algorithm.
spectral data set. Although not strictly necessary, we assume in thife selected VCA because its is the fastest among the state-of-the-art
version of the algorithm that a dimensionality reduction step (Seepure pixel-based methods. Since the output of VCA is a sgvef-

e.g, [17]) has been applied to the data set and the vegtoess R” 15 that are in the data set, then we can discard all vectors belonging
are represented in the signal subspace spanned by the endmemfefa convex set generated by the columngf If the number of
spectral signatures. Under the linear mixing model, we have endmembers is high, it may happen that the initial simplex provided
by VCA contains very few pixels inside and, therefore, most are out-

Y. = Ms o T 1) side, violating the nonnegativity constraints and slowing down the
st 20, 1,5=1,, algorithm. In such cases, we expand the initial simplex to increase
. pxp - . the number of pixels that are in the convex hall of the identified
whereM = [mi,...,my] € RP*?is the mixing matrix n; de-  gngmembers, which speeds up the algorithm. The pseudocode for

notes theith endmember signature apds the number of endmem- o MVSA method is shown in below. Symbal&Q). ; andg(Q); .
bers), andS' € R”*" is the abundance matrix containing the frac- gtanq for, respectively, thgth column and theth line of g(Q), the
tions (5];,; denotes the fraction of material; at pixelj). For each gradient off (Q).

pixel, the fractions should be no less than zero, and suin that

is, the fraction vectors belong to the probability simplex. ThereforeAlgorithm: Minimum Volume Simplex Analysis (MVSA)

the spectral vectorg; belong, as well, to a simplex set with vertices Input: p,Y, (f(Q) = log | det(Q)])

mg, fori=1,...,p. _ ) ~ Output: matrixQ
GivenY’, and inspired by the seminal work [6], we infer matrices
M andS by fitting a minimum volume simplex to the data subjectto 1: Qo := vcaY /Endmembers))
the constraints in (1). This can be achieved by finding the matfix 2: Qo := expandM);
with minimum volume defined by its columns under the constraints3: Y := discardY’); if y is inside the simplex
in (1). It can be formulated as the following optimization problem: 4: Inequality constraint
AxQ>b,A=YT @ 1I,,b=0p,
M* = argmin|[det(M)| @) 5. Equality constraint
st: Qv =0, 17Qy =1%, Aeq+ Q = beq, Aeq = I, ® 13, beq = g7,



6: ¢(Q):=—(Q 17T, whereg(Q) is the gradient off
70 [H(@Q)is = —19(Q):5 * 9(Q)is],

whereH (Q) is the Hessian matrix of
8: Q = SQF(f7 Q07A7 b7 AeCI» beQ7gvH)

Table 1. Comparison of MVSA and NMF-MVT algorithms for dif-
ferent number of endmembers and sample gsize 5000. The time
is in seconds anfiA|| » stands for the Frobenius norm of mateix

Based on experimental evidence, we have come to the conclu- p

sion that the complexity of the MVSA algorithm is roughiy(p®),
provided that the initiaf) is a feasible solution. Otherwise, the com-
plexity depends on the number active constraints. This is the reason

MVSA NMF-MVT
|M — M||p | time(sec.)| |M — M| | time (sec.)
0.01 4 0.876 153
5 0.04 5 0.785 344
10 0.06 74 5.154 730

why we start the algorithm with VCA, discard the spectral vectors
that are inside the inferred initial simplex, and expand it.

Fig. 1 shows a projection on a subspace of the true endmembers,

3. EXPERIMENTAL RESULTS

the endmembers inferred by MVSA, VCA, and MNF-MVT, and

the spectral vectors. The data set has size 10000 pixels and a
number of endmembegs = 3, part a), ancp = 10, part b). The

true
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Y(L) NMF-MVT time for, roughly,p > 15.

VCA fori =1,...

3.1. Robustness to outliers and noise

VCA

<O * -

Y(2,)
)
o

s.t.:

QT = arg max log | det(Q)| — A17hinggQY)1,,

where\ controls the relative weight between the soft constraint and
the thelog | det(Q)| term. Notice that, this soft constraint gives zero
weight to nonnegative abundance fractions and negative weight to
negative abundance fractions. In this way there is slack for the abun-
dance fractions originated in outliers or noise to be negative.

To solve (5), we apply again SQP to the new objective function,
but now removing the inequality constraing,,

Q = SQF(fsofh QOvAe%baLgv H)7

: data is generated according to the linear observation model (1). The
¢ * data points abundance fractions are Dirichlet distributed with parametet 1,

,p. The spectral signatures of the endmembers are
MVSA mineral reflectances, with 224 spectral bands, obtained from a li-
brary. To ensure that no pure pixel is present, we discarded all pixels
7 with any abundance fractions larger than 0.8. Notice the high quality
of the MVSA estimates in both secenarios: the stars representing
the true endmembers are all incide the squares representing the
MVSA estimate. The VCA produces the worst estimate, as it was
not conceived for data sets failing the pure pixel assumption.

7 __Table 1 shows the times in seconds and the Frobenius norm
|M — M]|r of the endmember matrix estimates yielded by the

) MVSA and NMF-MVT algorithms. The algorithms run in a 3.4GHz
Pentium 4 PC. MVSA performs much better with respect to both
time and error. However, concerning the time complexity, and for

w w : w w w - the sample size = 5000, the time MVSA takes gets larger than the

data points When there are outliers and noise in the data set, we run a final step
true i in which we replace the hard constra@t” > 0 with the soft con-

MVSA straint—lThinge(—QY)ln, where hingér) is an element-wise op-
NMF_MVT erator that, for each component, yields the negative part ofhe
modified optimization problem is

®)

Fig. 1. Unmixing results for (ap = 3 and (b)p = 10 number  Wherefs.y. is the new objective functiorQo is the output of steps
of endmembers for MVSA, MNF-MVT, and VCA algorithms. Dots 1 to 8 shown at the end of Section 2, afdg, beg, g, H are defined
represent spectral vectors; all other symbols represent inferred en@S before.
members by the unmixing algorithms. Notice que quality of MVSA ~ We applied this robust version of the MVSA algorithm to the
estimates. data set described above, with= 5000 andp = 3, but now in-

troducing additive zero-mean Gaussian noise to the spectral v ectors
This section presents results obtained by MVSA, VCA, andsuch as the SNR [ A||%/|[w]|% (w denotes the noise cube) was
MNF-MVT unmixing algorithms applied to simulated data sets.setto 10 dB. The error§M — M || ¢ of the MVSA and NMF-MVT



estimated endmember matrices were0df and 1.2, respectively.

Fig.

2 shows the results. Notice the good performance of the MVSA

algorithm. This are just very preliminar results that, nevertheless,
illustrates the potential of this soft constraint tool.

Fig.
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2. Noisy scenario. As in Fig. 1 fon = 5000, p = 3, and

SNR=10dB.

We

4. CONCLUSIONS

have introduced the minimum volume simplex analysis (MVSA)

algorithm, a new method to unmix hyperspectral data, under the lin-

ear

data set, imposing positivity and sum to one constraints on the abubl

mixing model. MVSA fits a minimum volume simplex to the

dance fractions. The resulting optimization problem is solved by

finding the solution of the respective Kuhn-Tucker equations using a
(12]

seq

uencial quadratic programming (SQP) method.
A shortcoming of the minimum volume simplex framework is

that even a single outlier may force the simplex of minimum volume

to be far away from a reasonable solution. To cope with outliers and

(3]

(4]

(5]

(6]

[7]

El

(10]

noise, we have introduced a robust version of the MVSA algorithmy 3]
In this version, the positivity hard constraint imposed on the abun-
dance fractions was replaced by a soft constraint of hinge loss type.
This formulation seeks for a minimum volume simplex where most

abundance fractions are nonnegative allowing,
be negative.

The effectiveness of the new method was illustrated in a limited

comparison with the state-of-the-ambn-negative matrix factoriza-

tion

results.

(1]

(2]

method [5], where the MVSA method yielded very competitive
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