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ABSTRACT

This paper presents a new method of minimum volume class
for hyperspectral unmixing, termedminimum volume simplex analy-
sis (MVSA). The underlying mixing model is linear;i.e., the mixed
hyperspectral vectors are modeled by a linear mixture of the end-
member signatures weighted by the correspondent abundance frac-
tions. MVSA approaches hyperspectral unmixing by fitting a min-
imum volume simplex to the hyperspectral data, constraining the
abundance fractions to belong to the probability simplex. The re-
sulting optimization problem is solved by implementing a sequence
of quadratically constrained subproblems. In a final step, the hard
constraint on the abundance fractions is replaced with a hinge type
loss function to account for outliers and noise.

We illustrate the state-of-the-art performance of the MVSA al-
gorithm in unmixing simulated data sets. We are mainly concerning
with the realistic scenario in which thepure pixelassumption (i.e.,
there exists at least one pure pixel per endmember) is not fulfilled.
In these conditions, the MVSA yields much better performance than
the pure pixel based algorithms.

Index Terms— Hyperspectral unmixing, Minimum volume
simplex, Source separation.

1. INTRODUCTION

Hyperspectral unmixing is a source separation problem [1]. Com-
pared with the canonical source separation scenario, the sources in
hyperspectral unmixing (i.e., the materials present in the scene) are
statistically dependent and combine in a linear or nonlinear fash-
ion. These characteristics, together with the high dimensionality of
hyperspectral vectors, place the unmixing of hyperspectral mixtures
beyond the reach of most source separation algorithms, thus foster-
ing active research in the field [2].

Given a set of mixed hyperspectral vectors, linear mixture
analysis, or linear unmixing, aims at estimating the number of ref-
erence materials, also called endmembers, their spectral signatures,
and their abundance fractions [1, 2, 3, 4, 5, 6]. The approaches to
hyperspectral linear unmixing can be classified as statistical and
geometrical based. The former addresses spectral unmixing as an
inference problem, often formulated under the Bayesian framework,
whereas the latter exploits the fact that the spectral vectors, under the
linear mixing model, are in a simplex set whose vertices represent
the sought endmembers.
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1.1. Statistical approach to spectral unmixing

Modeling the abundance fractions (sources) statistical dependence in
hyperspectral unmixing is a central issue in the statistical framework.
In [7], the abundance fractions are modeled as mixtures of Dirich-
let densities. The resulting algorithm, termed DECA, for dependent
component analysis, implements an expectation maximization iter-
atative scheme for the inference of the endmember signatures (mix-
ing matrix) and the density parameters of the abundance fractions.

The inference engine in the Bayesian framework is the posterior
density of the entities to be estimated, given the observations. Ac-
corging to the Bayes law, the posterior includes two factors: the ob-
servation density, which may account for additive noise, and a prior,
which may impose constraints on the endmember matrix (e.g.,non-
negativity of its elements) and on the abundance fractions (e.g., to
be in the probability simplex) and model spectral variability. Works
[8, 9] are representative of this line of attack.

1.2. Geometrical approach to spectral unmixing

The geometrical approach exploits the fact that, under the linear mix-
ing model, hyperspectral vectors belong to a simplex set whose ver-
tices correspond to the endmembers. Therefore, finding the end-
members is equivalent to identify the vertices of the referred to sim-
plex.

If there exists at least one pure (i.e., containing just one mater-
ial) pixel per endmember, then unmixing amounts to find the spec-
tral vectors in the data set corresponding to the vertices of the data
simplex. Some popular algorithms taking this assumption are the
the N-FINDR [10], the thepixel purity index(PPI) [11], theAu-
tomated Morphological Endmember Extraction(AMEE) [12], the
vertex component analysis(VCA) [4], and thesimplex growing al-
gorithm(SGA) [13].

If the pure pixel assumption is not fulfilled, what is a more realis-
tic scenario, the unmixing process is a rather challenging task, since
the endmembers, or at least some of them, are not in the data set. A
possible line of attack, in the vein of the seminal ideas introduced in
[6], is to fit a simplex of minimum volume to the data set. Relevant
works exploiting this direction are thenon-negative least-correlated
component analysis(nLCA) [14], thealternating projected subgra-
dients[15], and thenonnegative matrix factorization minimum vol-
ume transform(NMF-MVT) [16]. We consider that the NMF-MVT
algorithm is representative of the state-of-the-art in the minimum
volume simplex fitting approaches.



1.3. Proposed approach

We introduce theminimum volume simplex analisys(MVSA) algo-
rithm for unsupervised hyperspectral linear unmixing. As the name
suggests, MVSA belongs to the minimum volume class, and thus
is able to unmix hyperspectral data sets in which the pure pixel as-
sumption is violated.

Fitting a simplex of minimum volume to hyperspectral data is a
hard nonconvex optimization problem, which may end up in a local
minimum. To avoid poor quality local minima, a good initialization
is of paramount importance. We initialize MVSA with an inflated
version of the simplex provided by VCA [2], a pure pixel based al-
gorithm. Although this initialization may be far from the optimum,
we have observed that it is systematically in the attraction basin of a
good quality local minimum. Furthermore, since VCA yields a sim-
plex defined by spectral vectors existing in the data set, we can dis-
card all the spectral vectors that are inside this simplex, what accel-
erates the algorithm. Moreover, by carefully choosing the inflating
factor, the large majority of constraints related with the abundance
source fractions become inactive, what contributes to speeding up
the algorithm, as well.

Minimum volume simplex algorithms are very sensitive to out-
liers. To make MVSA robust to outliers and noise, we run a final
step in which the abundance fraction positivity hard constraint is re-
placed by a hinge type soft constraint. This step, applied after having
found the minimum volume simplex, preserves the good quality of
local minima.

The paper is organized as follows. Section 2 introduces the core
of MVSA algorithm. Section 3 illustrates aspects of the performance
of MVSA approach with simulated data, and Section 4 ends the pa-
per by presenting a few concluding remarks.

2. MINIMUM VOLUME SIMPLEX ANALYSIS
ALGORITHM (MVSA)

Let Y ≡ [y1, . . . , yN ] ∈ Rp×n be a matrix holding in its columns
the spectral vectorsyi ∈ Rp, for i = 1, 2, . . . , n, of a given hyper-
spectral data set. Although not strictly necessary, we assume in this
version of the algorithm that a dimensionality reduction step (see,
e.g., [17]) has been applied to the data set and the vectorsyi ∈ Rp

are represented in the signal subspace spanned by the endmember
spectral signatures. Under the linear mixing model, we have

Y = MS
s.t.: S º 0, 1T

p S = 1T
n ,

(1)

whereM ≡ [m1, . . . , mp] ∈ Rp×p is the mixing matrix (mi de-
notes theith endmember signature andp is the number of endmem-
bers), andS ∈ Rp×n is the abundance matrix containing the frac-
tions ([S]i,j denotes the fraction of materialmi at pixelj). For each
pixel, the fractions should be no less than zero, and sum to1, that
is, the fraction vectors belong to the probability simplex. Therefore,
the spectral vectorsyi belong, as well, to a simplex set with vertices
mi, for i = 1, . . . , p.

GivenY , and inspired by the seminal work [6], we infer matrices
M andS by fitting a minimum volume simplex to the data subject to
the constraints in (1). This can be achieved by finding the matrixM
with minimum volume defined by its columns under the constraints
in (1). It can be formulated as the following optimization problem:

M∗ = arg min
M

| det(M)|
s.t. : QY º 0, 1T

p QY = 1T
N ,

(2)

whereQ ≡ M−1. Sincedet(Q) = 1/ det(M), we can replace the
problem (2) with the following:

Q∗ = arg max
Q

log |det(Q)|
s.t. : QY º 0, 1T

p QY = 1T
N .

(3)

Optimizations (2) and (3) are nonlinear, although the constraints are
linear. Problem (2) is non-convex and has many local minima. So,
problem (3) is non-concave and has many local maxima. There-
fore, there is no hope in finding systematically the global optima
of (3). The MVSA algorithm, we introduce below aims at “good”
sub-optimal solutions of optimization problem (3).

Our first step is to simplify the set of constraints1T
p QY = 1T

N

by noting that every spectral vectory in the data set can be written
as a linear combination ofp linearly independent vectors taken from
the data set, sayYp = [yi1 , . . . , yip ], where the weights add to one:
i.e., y = Ypβ, where1T

p β = 1. It turns out then, the constraint
1T

p QY = 1T
N is equivalent to1T

p QYp = 1T
N or else to1T

p Q =

1T
p (Yp)−1. Definingqm = 1T

p (Yp)−1, we get the equality constraint
1T

p Q = qm. Then, the problem (3) simplifies to

Q∗ = arg max
Q

log | det(Q)|
s.t. : QY º 0, 1T

p Q = qm.
(4)

We solve the optimization problem (4) by finding the solu-
tion of the respective Kuhn-Tucker equations using a sequencial
quadratic programing (SQP) methods. This methods belongs to the
constrained Newton (or quasi-Newton) and guarantee superlinear
convergence by accumulating second-order information regarding
the Kuhn-Tucker equations [18]. Each quadratic problem builds a
quadratic approximation for the Lagrangean function associated to
(4). For this reason, we supply the gradient and the Hessian off in
each SQP iteration.

Usually, the hyperspectral data sets are huge and, thus, the above
maximization is heavy from the computational point of view. To
lighten the MVSA algorithm, we initialize it with the set of end-
membersM ≡ [m1, . . . , mp] generated by the VCA [2] algorithm.
We selected VCA because its is the fastest among the state-of-the-art
pure pixel-based methods. Since the output of VCA is a set ofp vec-
tors that are in the data set, then we can discard all vectors belonging
to the convex set generated by the columns ofM . If the number of
endmembers is high, it may happen that the initial simplex provided
by VCA contains very few pixels inside and, therefore, most are out-
side, violating the nonnegativity constraints and slowing down the
algorithm. In such cases, we expand the initial simplex to increase
the number of pixels that are in the convex hall of the identified
endmembers, which speeds up the algorithm. The pseudocode for
the MVSA method is shown in below. Symbolsg(Q):,j andg(Q)i,:

stand for, respectively, thejth column and theith line of g(Q), the
gradient off(Q).

Algorithm: Minimum Volume Simplex Analysis (MVSA)
Input: p , Y , (f(Q) ≡ log |det(Q)|)
Output: matrixQ

1: Q0 := vca(Y ,’Endmembers’,p)
2: Q0 := expand(M);
3: Y := discard(Y ); if y is inside the simplex
4: Inequality constraint

A ∗Q ≥ b, A = Y T ⊗ Ip, b = 0pn

5: Equality constraint
Aeq ∗Q = beq, Aeq = Ip ⊗ 1T

p , beq = qT
m



6: g(Q) := −(Q−1)T , whereg(Q) is the gradient off
7: [H(Q)]i,j := −[g(Q):,j ∗ g(Q)i,;],

whereH(Q) is the Hessian matrix off
8: Q := SQP(f, Q0, A, b, Aeq, beq, g, H)

Based on experimental evidence, we have come to the conclu-
sion that the complexity of the MVSA algorithm is roughlyO(p3),
provided that the initialQ is a feasible solution. Otherwise, the com-
plexity depends on the number active constraints. This is the reason
why we start the algorithm with VCA, discard the spectral vectors
that are inside the inferred initial simplex, and expand it.

3. EXPERIMENTAL RESULTS
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Fig. 1. Unmixing results for (a)p = 3 and (b)p = 10 number
of endmembers for MVSA, MNF-MVT, and VCA algorithms. Dots
represent spectral vectors; all other symbols represent inferred end-
members by the unmixing algorithms. Notice que quality of MVSA
estimates.

This section presents results obtained by MVSA, VCA, and
MNF-MVT unmixing algorithms applied to simulated data sets.

Table 1. Comparison of MVSA and NMF-MVT algorithms for dif-
ferent number of endmembers and sample sizen = 5000. The time
is in seconds and‖A‖F stands for the Frobenius norm of matrixA.

MVSA NMF-MVT
p ‖cM −M‖F time (sec.) ‖cM −M‖F time (sec.)
3 0.01 4 0.876 153
5 0.04 5 0.785 344
10 0.06 74 5.154 730

Fig. 1 shows a projection on a subspace of the true endmembers,
the endmembers inferred by MVSA, VCA, and MNF-MVT, and
the spectral vectors. The data set has sizen = 10000 pixels and a
number of endmembersp = 3, part a), andp = 10, part b). The
data is generated according to the linear observation model (1). The
abundance fractions are Dirichlet distributed with parameterµi = 1,
for i = 1, . . . , p. The spectral signatures of the endmembers are
mineral reflectances, with 224 spectral bands, obtained from a li-
brary. To ensure that no pure pixel is present, we discarded all pixels
with any abundance fractions larger than 0.8. Notice the high quality
of the MVSA estimates in both secenarios: the stars representing
the true endmembers are all incide the squares representing the
MVSA estimate. The VCA produces the worst estimate, as it was
not conceived for data sets failing the pure pixel assumption.

Table 1 shows the times in seconds and the Frobenius norm
‖cM − M‖F of the endmember matrix estimates yielded by the
MVSA and NMF-MVT algorithms. The algorithms run in a 3.4GHz
Pentium 4 PC. MVSA performs much better with respect to both
time and error. However, concerning the time complexity, and for
the sample sizen = 5000, the time MVSA takes gets larger than the
NMF-MVT time for, roughly,p > 15.

3.1. Robustness to outliers and noise

When there are outliers and noise in the data set, we run a final step
in which we replace the hard constraintQY º 0 with the soft con-
straint−1T hinge(−QY )1n, where hinge(x) is an element-wise op-
erator that, for each component, yields the negative part ofx. The
modified optimization problem is

Q∗ = arg max
Q

log |det(Q)| − λ 1T hinge(QY )1n

s.t. : 1T
p Q = qm,

(5)

whereλ controls the relative weight between the soft constraint and
the thelog | det(Q)| term. Notice that, this soft constraint gives zero
weight to nonnegative abundance fractions and negative weight to
negative abundance fractions. In this way there is slack for the abun-
dance fractions originated in outliers or noise to be negative.

To solve (5), we apply again SQP to the new objective function,
but now removing the inequality constraint,i.e.,

Q := SQP(fsoft, Q0, Aeq, beq, g, H),

wherefsoft is the new objective function,Q0 is the output of steps
1 to 8 shown at the end of Section 2, andAeq, beq, g, H are defined
as before.

We applied this robust version of the MVSA algorithm to the
data set described above, withn = 5000 andp = 3, but now in-
troducing additive zero-mean Gaussian noise to the spectral v ectors
such as the SNR≡ ‖A‖2F /‖w‖2F (w denotes the noise cube) was
set to 10 dB. The errors‖cM −M‖F of the MVSA and NMF-MVT



estimated endmember matrices were of0.2 and 1.2, respectively.
Fig. 2 shows the results. Notice the good performance of the MVSA
algorithm. This are just very preliminar results that, nevertheless,
illustrates the potential of this soft constraint tool.
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Fig. 2. Noisy scenario. As in Fig. 1 forn = 5000, p = 3, and
SNR= 10 dB.

4. CONCLUSIONS

We have introduced the minimum volume simplex analysis (MVSA)
algorithm, a new method to unmix hyperspectral data, under the lin-
ear mixing model. MVSA fits a minimum volume simplex to the
data set, imposing positivity and sum to one constraints on the abun-
dance fractions. The resulting optimization problem is solved by
finding the solution of the respective Kuhn-Tucker equations using a
sequencial quadratic programming (SQP) method.

A shortcoming of the minimum volume simplex framework is
that even a single outlier may force the simplex of minimum volume
to be far away from a reasonable solution. To cope with outliers and
noise, we have introduced a robust version of the MVSA algorithm.
In this version, the positivity hard constraint imposed on the abun-
dance fractions was replaced by a soft constraint of hinge loss type.
This formulation seeks for a minimum volume simplex where most
abundance fractions are nonnegative allowing, however, some may
be negative.

The effectiveness of the new method was illustrated in a limited
comparison with the state-of-the-artnon-negative matrix factoriza-
tion method [5], where the MVSA method yielded very competitive
results.
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